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Abstract 

We analyse the problem of reconciling small neutrino masses with the large 

electron neutrino magnetic moment p N (0.3 - 1) x 10’“j&~ required for the 

V&shin-Vysotski-Okun solution to the solar neutrino puzzle. We point out 

that the relations of plausible see-aw arguments can be upset if neutrino rna.w 

to lepton rnas8 ratios run with energy, but can be restored to reasonable values 

at high energy. We present e. solution in which neutrino masses are naturally 

close to their laboratory bounds. In particular 2MeV d m(u,) S 5OMeV and 

the branching ratio p + e7 must be finite. 
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1.) One of the unsolved problems of the standard electroweak model’ is the neutrino 

puzzle. Experiments thus far allow for a massless neutrino, although it may well 

be that neutrinos are massive but very light as compared to the other fermions. 

Understanding the smallness of the neutrino mass requires treating this particle on 

a different footing from other fermions. 

Ifright-handedneutrinos are added to the standud model, the currently popular 

see-saw mechanism* can generally be invoked to give any small Dirac mass m(v) at 

the expense of large Majorana masses. The logic involves SU(2) singlet interactions 

of the right-handed neutrinos which could be associated with a large scale M. An 

additional price one pays is that in some cases this high scale m may not be within 

the reach of present or future experiments. For example, Harari and Nirs quote a 

value of M X 50PeV, which is quite discouraging. Thus the see-saw mechanism, 

while attractively general,requires additional elements to be testable. Therefore 

it is useful to continue seeking explanations for the smallness of neutrino masses. 

A second aspect of the neutrino puzzle is the well-known deficit in the observed 

capture rate of solar electron neutrinos’ as compared to the calculations of the 

standard model. Even more significant is the observation of synchronized periodic 

time dependence of the neutrino flux which is anti-correlated with the sunspot 

numbers. Large numbers of sunspots occur with large values of the solar magnetic 

field, so that the anti-correlation can be explained if one assumes a large neutrino 

magnetic moment. Voloshyn, Vysotski and Okun’ (VVO) argue that a neutrino 

magnetic moment ,uv - 0.3-1.0x 10’O/.~n, where pz = eJ2m.c is the Bohr magneton, 

can explain the data. The mechanism hinges on conversion of left-handed electron 

neutrinos to right-handed neutrinos through the helicity-flipping moment coupling, 

the process depending on the depth and magnitude of the solar magnetic field. 

The magnetic moment required is seven to nine orders of magnitude larger than 

standard model estimates.’ Even so, uncertainties in the solar magnetic field, as 

well as more subtle questions of the importance of coherent (MSW) effects* and 

normal mixing make the VVO implementation of the idea somewhat tentative. A 

reasonable window to work with in considering VVO is pv - lo-” - lO-“‘fin, 

keeping in mind that flavor off-diagonal neutrino transitions could be important 

and the firm laboratory bound9 ,h, < 2 x 10-lopa. 

2.) In this paper we investigate a model that is capable of producing a large 

neutrino magnetic moment. We consider reconciling the largeness of the magnetic 
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moment with the smallness of neutrino masses. This is a serious problem since 

large mass corrections tend to be generated by the same type of diagrams that give 

large magnetic moments. However, since the mass corrections are logarithmically 

divergent, they are impossible to interpret until set into a renormalization group 

context. We will see that the predictive power of the see-saw arguments is thus 

enhanced. 

Conventional wisdom assumes that neutrino masses, when finally observed, will 

obey a hierarchy m(r+) > m(v,,) > m(~~). H arari and Nir3J0 have argued that in 

any %sonable see-saw” picture one can expect to find the more detailed relation 

where mi is the mass of the charged leptons. For P = 1, this relation predicts 

the tau neutrino to have a mass vastly smaller than current direct measurements. 

Taking m(v.) S 20eV, we find m(v,) S ‘IOkeV, about 1000 times smaller than the 

ARGUS bound’l m(r+) S 50MeV. A similarly unsatisfactory situation occurs for 

m(v,,) .S 270keV, the current laboratory bound. 

The relation (l), however, is not specific about the measurement scale of the 

mass parameters. That is, such relations could be upset by renormalization effects, 

if the neutrinos and charged leptons run with energy at different rates. 

Let us assume the reasonable hierarchy (1) applies at a high-energy scale A 

where symmetry breaking and mass generation takes place. We call this a ‘bare” 

resonable see-saw, as opposed to the renormalized case. A crude estimate of the 

change in mssses Ana ss measured at a laboratory scale $ is given by 

Am(uk) 2 CJn(A*/~*) (2) 

where Ck is a calculable coefficient, related to the anomalous dimension of the 

running mass. We know (2) is not the same as the solutions of exact renormalization 

group equations, which include running coupling effects. However it is a reasonable 

estimate, which we could expect to work within a factor of 2 or 3 or so, just like 

the reasonable relation (1). (Note that quark masses even within the same doublet 

and at the same scale can differ by an order of magnitude.) 

If (2) is used, one considers whether there can occur much different constants 
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Cr for the neutrinos as compared to charged leptons. We will show that this indeed 

happens in the model we study. One possible and attractive picture we obtain is 

that the electron neutrino mass runs the fastest, departing from the magic ratio (1) 

to an anomalously small value at low energy. This can occur precisely because the 

large magnetic moment of the electron neutrino assumes large radiative corrections. 

Moreover, the analysis is restrictive enough to constrain the other neutrino masses, 

and we find that they do not have to be unreachably small when measured at 

laboratory scales. 

The large mass values require short neutrino lifetimes to satisfy cosmological 

bounds. The short lifetimes, however, occur naturally with the large magnetic 

moments in the model via transitions Vj --t vi + 7. Thus we find several predictions 

from the overall consistency of the picture. 

8.) In the standard model, pv - 10-‘O~s(m,/eV) is smalls’* because of a GZM 

suppression. However, in general p” does not have any direct relation to m,. The 

magnetic moment, as a dimension-five interaction, does probe radiative corrections 

rather uniquely. Fukugita and Yanagida13 show that pv of the order needed by VVO 

is indeed possible through one-loop radiative corrections in a simple extension of 

the GWS model. 

The modelr3-‘s introduces one new charged scalar particle I], an SU(2) singlet 

carrying lepton number 2. Individual lepton numbers Lj for j = 1,2,3 for e, p, r are 

not necessarily conserved, but total lepton number is conserved. The most general 

lepton interaction with 7, renormalizable by power counting, is 

Llbt = &jLiiLCq+ + fijPfi’&V+ , (3) 

where L = (u,e-)L is the usual SU(2) doublet, i, j are flavor indices and e de- 

notes charge-conjugation. The couplings are limited to gij = -gji and fij = -fji 
by SU(2)r, and SU(2)n symmetry, respectively, the latter imposed for simplicity. 

Parity conservation in the r] interaction can be imposed to give fdj = gij. The au- 

thors of Ref. (13) argue that the n-scalar might be observed in the mass range 

25GeV < m, < lTcV, the lower bound based on production searches. 

The main constraint on (3) comes from the smallness of /I -+ ey, which requires 
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a small relative value for the couplings 

f23f3, + 923931 + 0 . (4) 

If we impose parity conservation1 and real couplings we have fij = gij, implying 

from (4) 

Q23!?31 4 0 . (5) 

Dropping parity conservation generally makes all relations easier to satisfy. For this 

work we usually interpret (5) rather literally, although strictly speaking data only 

requires’s the p + ey branching ratio to be less than 2 x 10-l’. We obtain three 

cases, we discuss in detail, (I) gr3 -+ 0; (II) grs,grs + 0; (III) grs + 0. 

The one-loop diagrams of Fig. 1 give rise to the neutrino magnetic moment. Gen- 

erally there is a transition moment matrix” /lij, defined by L: = $~ij~~o”‘F~uJL, 

that can be calculated to giver3JsJ7 

Pij = j&j T (&if; + fil$) g [rn(milm:) - l] > 

= & T i7itChjG [~n(m~lm3 - l] 9 

where rnr is the mass of the I’” charged lepton inside the loop. Suppressing the 

logarithm and numerical factors in (6), the VVU transitions of electron neutrinos 
in the sun could include the following: 

Ul +r + I+ ; 

y+r--+ k? ; 

I++7 + u3 ; 

i713g3m3 + w722m2 

813832m3 

912g23m . (7) 

Thus a sizeable magnetic moment in the three cases and the p + ey suppression 

~III SCMIM CM-, (e.g. gas quote large) it cannot be FLSSUIII~~ that fij = g<j is automatically 
consistent with all experimental constrainta. In particular, the; interference of conventional V - A 
terms in JI decay with 012 shows that g1~ cannot be too 1mgP. The more general relation p<j = af<j 
in consistent with all constraints. Since all maas corrections and magnetic moment scale like fg, 
nothing in our analysis depends on the parameter a and it can be safely absorbed in the values here 

quoted for g” 
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will 5x a combination of the couplings going like 

(I) Q23 + 0 : g13tmm3 + cm72m ; transitions u1 * u1 only . 

(II) 913r923 + 0 : mwm ; transitions u1 ++ u1 only . 

(HI) 913-+0: g12g23m2,gwmm2 ; transitions ul tt ul, u1 t-f u3 . 

Note that only in case III is there the possibility of off-diagonal transitions to deal 

with. To obtain a least restrictive condition for VVO to work, we extend the naive 

moment condition pV E (0.3 - 1) x lO-‘Onz to allow the full probability of ur + 7 

to be the needed order of magnitude: 

fi:1+ A42 + Pl3 - 
2 u 1(-J-*1/& 

We have chosen the lower bound to impose the weakest limits. The bulk of our 

analysis does not depend much on the details of this generalization, as it will become 

clear below that allowed transitions are almost purely diagonal (1111). Thus either 

the naive VVO condition or the generalized one (8) can be used self-consistently. 

Let us also study the one-loop neutrino mass correction matrix Amij, ss calcu- 

lated from Fig. 2. We have 

Amij = 

i 

2(fimlmz + fi3g3m3) (fi3g32 + a3f32)m3 (fizg23 + gufzsh 

(fi3i732 + gl3f3zlm3 2(f23i732m3 + f2m24 (f2m3 + ihfl3h 

(fm723 + sl2f23h (fim3 + mfl3h 2(f3m3m + f32923m2) I 

XI 

(9) 

where’s I is the logarithmically divergent integral 

I(p*,m~,A*;mf) = J - (2) (k* - m:) ((p’- k)* - mf) 

= &n (As/m:) + 5nite 

and in the limit rn: and A2 > m:. Here As is an ultraviolet cutoff; a value of A* 

can be chosen to parameterize the 5nite parts of mass counter terms. Note that 

the charged lepton masses ml in (9) tend to be large’compared to neutrino masses, 

posing the problem of interpretation we referred to in Section 2. 

4.) We now consider starting with typical laboratory mass values for neutrinos and 

renormalizing up in scale, to predict msm ratios at high energy. We understand that 
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a more conventional procedure might begin at high energy and renormalize down, 

but we wish to make use of data measured at low energies. We first note that from 

neutrino oscillation experiments l9 the mixing is either nearly or 90”(sins24 < 1) 

between weak eigenstates to form mass eigenstates, barring the case of very tiny 

Am*. Since in the mass matrix (9) the logarithm is an overall factor, the basis which 

diagonalizes the correction Amij does not change with scale, to leading order, so 

if we diagonalize at low energy the basis. stays good at high energy. However, 

only for certain ranges of the coupling constants grz, grs, grs is the weak eigenstate 

a mass correction eigenstate, so we may restrict attention to such ranges. For 

a diagonalized matrix, the crude multiplicative scaling (2) is reasonable, as the 

change in each matrix element is decoupled from the others. 

Imposing parity conservation in case I (grs + 0) we have 

1 
Amij = - 

1tW 
i 

-2(d,mz + d3m3) 0 0 

0 --2gh --2m713m 

I 

(11) 
0 --2g12913ml --2d3ml 

which leads us to the following set of eigenvalues and eigenstates: 

Ami = -2(g:,mz + g:3ms)/16n2 ; 11’ >= lur > ; 

Ami = 0;(2’>=cost9lu*>-sin+3> ; 

Am: = -2(gL + d3)ml/16n2 ; 13’ >= sin+r > +cos9~u3 > , (12) 

where we have made 

We thus see that the I(- and r- neutrinos combine to form an approximately 

invariant eigenstate and a state with a correction proportional to the electron mass. 

The other eigenstate coincides with the electron neutrino and has a correction to 

m(u,) set by the muon and tau masses. 

For case II (grs,gss + 0) the mass matrix can be read off from (11). The matrix 

is diagonal in the flavor basis with Am(u3) z 0 and Am(vr), Am(uz) going like mr 

and ml, respectively. 
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For case III (grs + 0) the matrix (9) reads 

1 
-2gfp2 0 -2912923m2 

Amij = - 
1&r* 

i 

0 -2(&ml + d3m3) 0 (13) 

-2gl2923mz 0 -%,2,m2 

with eigenvalues and eigenstates 

Am: = 0 ; Il’>=cosqb(u~ > -sindlu3 > ; 

Ami = -2 (g&ml + gi3ms) /16x’ ; 12’ >= IUZ > ; 

Ami = -2 (d + d3) mz/l6n* ; 13’ >= sint#ly > +cosdIu3 > , (14) 

where 

We thus 5nd that the simultaneous requirements of parity conservation and /.J -+ ey 

suppression leads to one invariant and two corrected masses. In case II, where 

Q13.923 N 0, the mass matrix is diagonal and the neutrino mass corrections do not 

parallel the corresponding charged lepton masses. In case III the invariant neutrino 

is a combination of the electron and tau neutrino, while the muon neutrino changes 

its mass with no mixing. 

6.) A case giving a large correction to m(ue) is case III, grr > grs, so sin++ -+ 1. 

Let us show how this example can reconcile the VVO moment and the reasonable 

see-saw relation. 

(1). For numerical estimates we take a minimum value of In (AZ/m:) 4 1,grs -+ 0 

and grs Z l/19, the last from the VVO relation (8). A detailed discussion of 

coupling limits is given in Sec. 7. 

For these couplings the state 13’ >- Iv. > from (14,15) so Ami g Am(u.) E 

-3.8keV with the above values. The other corrections are much smaller, Am(u,,) Z 

-18eV and Am(u,) G 0. Corrections of this order are negligible for the charged 

leptons. However, we see that the m(ue)/ m, ratio is receiving a large change: at 

high energy it could be as much as (3.8keV)/511keV = 7.4 x 10m3. The situation 
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for the mass ratios in thii case at hi energy becomes 

m(u,) : m(u,,) : m(uv) = 7.4 : 2.5 : 28 

m, m, m, x10-s 

using the renormalized laboratory bounds. Note these values are quite acceptable, 

although m(u,)/m, is large. Of course the bounds are upper limits, so m(u,)/m, can 

be smaller and still consistent: with a value 4-10 times smaller than the laboratory 

bound this ratio would come closer to the other two. That would occur if the 

low energy m(r+) were found to be m(v,) N 12.5 - 5MeV, a value that could be 

measured in the not-toedistant future. 

Recalliig that the “bares P = 1 seesaw required m(vr) to be 1000 times (or 

more) smaller than the laboratory bound, (16) is a muchmore optimistic prediction. 

Moreover, the low value of m(u,)/m, indicates that if the ratios are to be believed, 

then m(v,) should not be too far from the current bounds. However, if one found 

that m(u,,) were very muchsmaller that its current bound, then it would rule out our 

proposal, since m(u.) is at its lowest high energy value already. While such relations 

cannot be conclusive in the absence of real measurements of the neutrino masses, 

(16) demonstrates that the ratios can be renormalized to satisfactory values. We 

conclude that one would not throw out the model on the basis of mass corrections; 

indeed, the results go in the direction of improving the situation. 

The reader can check that the interesting ewe we have just studied is not the 

only one that C~UI be consistent with data. For example, case III 0~ > grs(sin q5 + 0) 

can be made consistent, at least up to thii stage. However, such a case has little 

to say about renormaliiing the reasonable see-saw. With m(u.) invariant, one is 

stuck with m(u,)/mr 5 4 x lo-’ in the P = 1 ease. Consequently, we would have 

nothing interesting to say about m(u,). Similarly, the P p-2 cases are gen&y not 

so interesting aS the. P’= 1 limit, as o&can always cook-up a neutrino maas that, 

will satisfy the bounds, without being able to say much else. Leaving aside such 

situations, we now continue with the interesting case to study the neutrino lifetime. 

6.) The arguments above have shown that it is plausible for the neutrino masses to 

have values close to their current laboratory Fits. However the laboratory limits 

are generally not ss stringent as the more model dependent cosmological limits that 

can be imposed. There is no way we can come close to the stable neutrino limitse 
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Cim(r+) .S 60 eV for all the neutrinos. This leaves the case of unstable p and r 

neutrinos. 

For unstable neutrinos we have the bound*“JO 

m'(Uj)T~ A 2 X 10ZoeVr set (17) 

where r, is the neutrino lifetime, assuming rv < 10” set, the age of the universe. 

The radiative decay Vj + Vi + 7 can be calculated in the model. Such decays” go 

through pji the transition magnetic moments given by (6). The rate” Tp = 5 is 

l?y = (j4ji)2m(Uj)3/8T; 

7" = 1.9 X 10” set (10-‘“p8/ILji)2 (eV/m(Uj))s , (18) 

in the limit m(vj)/m(Ui) > 1. A convenient formula combining the bound and 

radiative lifetime is 

09) 

In many models such a bound can be hard to manage, as the decay rate tends to 

be too slow. Let us see if the p and r neutrinos can satisfy (19) for our solution. 

The following moments are needed: 

UT -+ ye + 7 * P31 - mmmz/m:, 

ur + u. + 7 * ~21 - g23g3m2/m~ 

These decays depend on the couplings gss, gsr that we suppressed earlier. Given 

m(ur) B m(u,), grs > grs,grs, we need only check that prr is large enough to show 
whether both u, and u,, pass the unstable bound. 

A bound on the ~21 moment can be obtained from the p + ey rate as follows. 

The rate F(p + er) is given by l3 

r (p -+ e7) = km3 &+3!?3z2 
[ 1 5 lo-‘lsec, 

the second relation coming from the muon lifetime and branching ratio. We then 
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obtain a limit 

l;ry;2 Q13Q32 I 4.5 x lo-“Ps 
n 

P3) 

which we can use to bound ~2~. Comparing (20) to (6) we must supply a factor 

m,/mJn(m~/m~ - 1) 2 77 to bound the neutrino moment fial. We get pzl S 3.5 x 

lo-‘rp~ for any reasonable value of m,. Finally, we check the lower bound on m(u,,) 

using ~21 at its maximum value: 

eV=68eV 

+A = 1.07 x lo6 8 WI 

Even using the present p + ey branching ratio bound, the value m(u,) - 250 keV in 

our ratio relations (16) is easily consistent with (21). However, it is quite possible 

that the p + ey transition moment is an order of magnitude or more smaller 

than the present upper limit. In that case, the muon neutrino msss bound (21) 

becomes m(u,,) X 6.8 keV which is a much more restrictive situation. Of course, 

the couplings gis,gas implied by (20) are consistent with our diagonalization case 

III as long as we keep grs > gcs > gis. The product giagss fixed by (20) is small 

enough to keep this well satisfied. 

We note that even if the upper bound on the branching ratio of p --t ey decay is 

improved by as much as 3 orders of magnitude, the cosmological bound from (21) on 

m(u,,) can still be satisfied. Finally, if the decay p + ey were absolutely forbidden, 

then this bound on the mass of m(u,,) would fail. Thus, the overall consistency 

of the picture requires both a finite branching ratio /.J + ey and a finite mass for 

mhl. 

7.) The feature of zero maas corrections at one-loop order is interesting and suggests 

we study the msss matrix from a different point of view. We might adopt the 

one-loop values literally, comparing the corrections with data, and hope to find a 

justification for dismissing running mass effects if such a comparison worked. Here 

we will show that such an interpretation is not consistent with data in any case: we 

present it for completeness. 

It is possible to examine cases I-III systematically. In case I, we must have 

gls > glr for small mixing and the solution of coupling constants is the same as 
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in Ref. (13). The tau mass fixes the diagonal moment pll, and one can show 

g& E 10-sm~/GeVz. Given a lower bound m, X 25 GeV,g13 X l/40 follows. Then 

the value of the electron neutrino mass rni in (12) is larger than 12g~,ms/16?r21 FT 

14 keV. Comparing this to the laboratory bounds m(u.) .S 30 eV, thll case fails 

the literal interpretation by two orders of magnitude. 

For case II (grs, grs + 0), the msss matrix is diagonal. We first impose the VVO 

magnetic moment constraints from (8). Note that in either case II or case III ~12 

is small, while pll and pls go like ms. We then obtain a numerical condition upon 

combining (8) with (6): 

z 4.5 x lWmWeV2) 
fh[mi/ma] - 1 ’ (221 

The relation above assumes the lowest VVO value /.J N 0.3 x 10-“~~ as the least 

restrictive, and the numerical value given has incorporated the muon maas. We 

compare (22) with the mass eigenvalues and laboratory bounds 

rni = 2g:,ms/16?r2 .S 30 eV 

m: = 2g:,mr/16rr2 S 270 keV 

m:=O d 50MeV. 

(23) 

We need gia S l/211 to satisfy rnt S 30 eV. Thii in turn implies an upper bound 

ma S 1.5 GeV using VVO (22). This is sufficient to rule out case II. 

For case III (grs + 0) neutrino oscillation experiments are important. We see 

that mass differences in the e - r sector are large (c.f. (14)) so we must be in a 

region of small mixing combination sin’ 24 < 1 to be consistent with data. For this 

discussion, we interpret data as requiring 

Isin = $~~g~~ S (3 x 1O-3)1/2 

This is an estimate, but reasonable since data absolutely prohibits sin* 241s ss large 

ss lo-’ for anything but very tiny mass differences. The ratio [gi2/gcs[ = j tan41 = t 

can be determined from (24), giving two possibilities 

t* - 36.5t + 1 X 0 =+ t X 36.5 or t S l/36.5 (24e) 
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For large mixing, (15) is at nearly ninety degrees. So, if gr* > g**, we have 

Isin < 1 and 13’ >= Iv1 > while 11’ >z -Iv3 >. Thus, to an excellent approxi- 

mation, the laboratory electron neutrino mass bound applies to m& so that 

2g:,m*/16n2 2 30 eV (25) 

Furthermore, the VVO condition (22) simplifies, reading 

4.5 x 10-6m~/GeV* 
“* E ln(m~/m~) - 1 ’ 

Requiring m, > 25 GeV, (26) gives gl* * X 2.8 x lo-*, a value too large to satisfy 

inequality (25). 

For small t, the mass and flavor eigenstates nearly coincide and g2s is the large 

coupling. In thii case, condition (22) becomes 

1 6.7 x 10-3m,/GeV x o 32 

’ 
(27) 

In this case, m; > 2 MeV, beyond the laboratory limit on m(u,). This rules out 

case III and the literal interpretation of the corrections as equivalent to the masses. 

Finally, given that gl* X l/l9 from (26) as we have seen, (24a) implies for 

consistency that g** g &gi*. For an r) particle msss in its expected range” of 30 

GeV, using the cosmological unstable bound 

with 

1 lo-‘s/.Q * 
m(h) L E 

( ) P31 

e %23912 
1(31 = 32s* m; --m,(LfZ-1) 

we can predict the following upper bound on m(u,): 

m(u,) X 2 MeV ’ (30) 

For m(u,) at its lower limit, we find mvr/m, = 1.1 x 10m3, nicely compatible with 

the see-saw ratios quoted earlier in eq. (16). 
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8.) Let us summarize our results and the accomplishments of this analysis. We have 

seen that a model in which the VVO u. magnetic moment is satisfied predicts large 

corrections for the electron neutrino mass, in as least one case. These corrections go 

in the direction of making the reasonable see-saw a more optimistic predictive tool, 

as we obtain m(u,) - 20 eV, m(u,,) E 70 eV - 250 keV and m(u,) - 2 - 50 MeV 

after applying the corrections. In the model, both u,, and u, satisfy the unstable cos- 

mological neutrino constraints, while u. naturally is consistent with stable bounds. 

We can have m(u,,) or the branching ratio of ,U + cy much smaller than their labo- 

ratory bounds and still satisfy the main constraints in the problem. However, both 

must not be zero. Thus our procedure is consistent with the requirements and has 

some predictive power. 

The analysis above is based on a ‘poor man’s” renormalization evolution, admit- 

tedly crude, but appropriate for the spirit of the typical see-saw ratio requirements. 

The alternative interpretation of one-loop radiative corrections to masses as literal 

msss matrix elements was also checked. A systematic analysis shows that no region 

of glrr gssrgls couplings or value of rni can be found that is consistent with all mass, 

mixing and VVO moment requirements for the literal interpretation. Since such 

an interpretation is not really consistent with the formal meaning of the divergent 

mass corrections, we do not adopt it in any case. 

Our basic ideas of renormalizing the bare see-saw to incorporate the effects of 

running masses can be explored in any renormalizable model. A model with fewer 

coupling constants is preferable for disentangling the true renormalization group 

structure. 
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Figure Captions 

Figure 1: One-loop diagram giving rise to a neutrino magnetic moment. 

Figure 2: One-loop contribution to neutrino mssses. 
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